Impact of Lead (Pb) Exposure on Hematological Parameters, hs-CRP, Ferritin, and Oxidative Stress (MDA) in Battery Factory Workers

Authors

  • Nur Siti Maryam Sekolah Tinggi Ilmu Kesehatan Nasional, Faculty of Medical Laboratory Technology, Sukoharjo, Indonesia
  • Indah Tri Susilowati Sekolah Tinggi Ilmu Kesehatan Nasional, Faculty of Medical Laboratory Technology, Sukoharjo, Indonesia.
  • Kanti Rahayu Sekolah Tinggi Ilmu Kesehatan Nasional, Faculty of Medical Laboratory Technology, Sukoharjo,Indonesia
  • Rizki Alifah Nur Saputro Sekolah Tinggi Ilmu Kesehatan Nasional, Faculty of Medical Laboratory Technology, Sukoharjo, Indonesia

DOI:

https://doi.org/10.31964/mltj.v11i1.629

Keywords:

Blood lead level, ferritin, hematology profile, hs-CRP, workers, malondialdehyde (MDA)

Abstract

Exposure to lead in the workplace is common, with most employers and workers unaware of its adverse health effects. This study examines the relationship between blood lead levels in battery factory workers and health examination results such as Hematology profile (Hemoglobin level, Leukocyte count, Hematocrit Level, Platelet count, Erythrocyte Count, MCV, MCH, and MCHC), malondialdehyde (MDA), ferritin, and hs-CRP. The samples of this study were 25 blood samples of battery factory employees in Jakarta who were older than 40 years and had worked for more than 1 year. Workers' blood samples were collected using vacuum tubes and placed in ice boxes to be sent to PT Petrolab Service Laboratory for blood lead level examination, Citama Hospital Laboratory Unit for blood profile examination, ferritin level, and hs-CRP value, and Prodia Jakarta Clinical Laboratory for MDA level examination. Bivariate analysis examined the relationship between lead levels, blood profile, ferritin levels, MDA levels, and hs-CRP values. Using the entered formula, multivariate analysis was used to test the relationship between lead levels and blood profile, ferritin levels, MDA levels, and hs-CRP values. The significance level used to test the significance of the relationship was <0.05. The bivariate test results showed there was a correlation between blood lead levels and hs-CRP levels (P=0.000), MDA levels (P=0.000), ferritin levels (P=0.000), Hb levels (P=0.000), hematocrit levels (P=0.006), MCV value (P=0.000), and MCH value (P=0.004). In contrast, Multivariate analysis showed lead levels significantly correlated with MDA level (P=0.014), ferritin level (P=0.005), and MCV value (P=0.013). Blood lead levels should be controlled to reduce the risk of oxidative stress and its impact on health, and it is hoped that workers in contact with lead will place more emphasis on occupational safety and health.

References

Adeyemi WJ, Abdussalam TA, Abdulrahim A, & Olayaki LA. (2020). Elevated, sustained, and yet reversible biotoxicity effects of lead on cessation of exposure: Melatonin is a potent therapeutic option. Toxicology and Industrial Health, 36(7), 477–486.

Angeli, J. K., Cruz Pereira, C. A., de Oliveira Faria, T., Stefanon, I., Padilha, A. S., & Vassallo, D. V. (2013). Cadmium exposure induces vascular injury due to endothelial oxidative stress: the role of local angiotensin II and COX-2. Free Radical Biology and Medicine, 65, 838–848. https://doi.org/10.1016/j. freeradbiomed.2013.08.167

Azeh Engwa, G., Udoka Ferdinand, P., Nweke Nwalo, F., & N. Unachukwu, M. (2019). Mechanism and Health Effects of Heavy Metal Toxicity in Humans. In Poisoning in the Modern World - New Tricks for an Old Dog? IntechOpen. https://doi.org/ 10.5772/ intechopen.82511

Burnase, N., Jaiswal, S., & Barapatre, A. (2022). Metal Toxicity in Humans Associated with Their Occupational Exposures Due to Mining (pp. 127–186). https://doi.org/ 10.1007/978-3-030-99495-2_7

Cabral Pinto, M. M. S., & Ferreira da Silva, E. A. (2018). Heavy Metals of Santiago Island (Cape Verde) Alluvial Deposits: Baseline Value Maps and Human Health Risk Assessment. International Journal of Environmental Research and Public Health, 16(1), 2. https://doi.org/10.3390/ijerph16010002

Cabral Pinto, M. M. S., Ordens, C. M., Condesso de Melo, M. T., Inácio, M., Almeida, A., Pinto, E., & Ferreira da Silva, E. A. (2020). An Inter-disciplinary Approach to Evaluate Human Health Risks Due to Long-Term Exposure to Contaminated Groundwater Near a Chemical Complex. Exposure and Health, 12(2), 199–214. https://doi.org/10.1007/s12403-019-00305-z

Cabral-Pinto, M. M. S., Inácio, M., Neves, O., Almeida, A. A., Pinto, E., Oliveiros, B., & Ferreira da Silva, E. A. (2020). Human Health Risk Assessment Due to Agricultural Activities and Crop Consumption in the Surroundings of an Industrial Area. Exposure and Health, 12(4), 629–640. https://doi.org/10.1007/s12403-019-00323-x

Chatha, A. M. M., & Naz, S. (2023). Carcinogenic Effects of Lead (Pb) on Public Health. BioScientific Review, 5(4), 97–110. https://doi.org/10.32350/bsr.54.08

Chwalba, A., Maksym, B., Dobrakowski, M., Kasperczyk, S., Pawlas, N., Birkner, E., & Kasperczyk, A. (2018). The effect of occupational chronic lead exposure on the complete blood count and the levels of selected hematopoietic cytokines. Toxicology and Applied Pharmacology, 355, 174–179. https://doi.org/10.1016/ j.taap.2018.05.034

Ciosek, Ż., Kot, K., Kosik-Bogacka, D., Łanocha-Arendarczyk, N., & Rotter, I. (2021). The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue. Biomolecules, 11(4), 506. https://doi.org/10.3390/biom11040506

Collin, M. S., Venkatraman, S. K., Vijayakumar, N., Kanimozhi, V., Arbaaz, S. M., Stacey, R. G. S., Anusha, J., Choudhary, R., Lvov, V., Tovar, G. I., Senatov, F., Koppala, S., & Swamiappan, S. (2022a). Bioaccumulation of lead (Pb) and its effects on human: A review. Journal of Hazardous Materials Advances, 7, 100094. https://doi.org/10.1016/j.hazadv.2022.100094

Collin, M. S., Venkatraman, S. K., Vijayakumar, N., Kanimozhi, V., Arbaaz, S. M., Stacey, R. G. S., Anusha, J., Choudhary, R., Lvov, V., Tovar, G. I., Senatov, F., Koppala, S., & Swamiappan, S. (2022b). Bioaccumulation of lead (Pb) and its effects on human: A review. Journal of Hazardous Materials Advances, 7, 100094. https://doi.org/10.1016/j.hazadv.2022.100094

Danziger, J., Willetts, J., Larkin, J., Chaudhuri, S., Mukamal, K. J., Usvyat, L. A., & Kossmann, R. (2024). Household Water Lead and Hematologic Toxic Effects in Chronic Kidney Disease. JAMA Internal Medicine, 184(7), 788. https://doi.org/ 10.1001/jamainternmed.2024.0904

Dey, S., Veerendra, G. T. N., Padavala, S. S. A. B., & Manoj, A. V. P. (2023). Recycling of e-waste materials for controlling the environmental and human heath degradation in India. Green Analytical Chemistry, 7, 100085. https://doi.org/ 10.1016/j.greeac.2023.100085

Fu, Z., & Xi, S. (2020). The effects of heavy metals on human metabolism. Toxicology Mechanisms and Methods, 30(3), 167–176. https://doi.org/10.1080/15376516. 2019.1701594

Gomes, W., Devóz, P., Rocha, B., Grotto, D., Serpeloni, J., Batista, B., Asimakopoulos, A., Kannan, K., Barbosa Jr., F., & Barcelos, G. (2023). Association between Polymorphisms of Hemochromatosis (HFE), Blood Lead (Pb) Levels, and DNA Oxidative Damage in Battery Workers. International Journal of Environmental Research and Public Health, 20(4), 3513. https://doi.org/ 10.3390/ijerph20043513

Gottesfeld, P., Were, F. H., Adogame, L., Gharbi, S., San, D., Nota, M. M., & Kuepouo, G. (2018). Soil contamination from lead battery manufacturing and recycling in seven African countries. Environmental Research, 161, 609–614. https://doi.org/ 10.1016/j.envres.2017.11.055

Gupta, N., Yadav, K. K., Kumar, V., Kumar, S., Chadd, R. P., & Kumar, A. (2019). Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration - A review. Science of The Total Environment, 651, 2927–2942. https://doi.org/10.1016/j.scitotenv.2018.10.047

Hawkins, C. L., & Davies, M. J. (2019). Detection, identification, and quantification of oxidative protein modifications. Journal of Biological Chemistry, 294(51), 19683–19708. https://doi.org/10.1074/jbc.REV119.006217

Hindarwati, Y., Retnaningsih Soeprobowati, T., & Sudarno. (2018). Heavy Metal Content in Terraced Rice Fields at Sruwen Tengaran Semarang - Indonesia. E3S Web of Conferences, 31, 03009. https://doi.org/10.1051/e3sconf/20183103009

Ito, F., Sono, Y., & Ito, T. (2019). Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation. Antioxidants, 8(3), 72. https://doi.org/10.3390/antiox8030072

Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. International Journal of Molecular Sciences, 22(9), 4642. https://doi.org/ 10.3390/ijms22094642

Kumar, A., Chaturvedi, A. K., Yadav, K., Arunkumar, K. P., Malyan, S. K., Raja, P., Kumar, R., Khan, S. A., Yadav, K. K., Rana, K. L., Kour, D., Yadav, N., & Yadav, A. N. (2019). Fungal Phytoremediation of Heavy Metal-Contaminated Resources: Current Scenario and Future Prospects (pp. 437–461). https://doi.org/10.1007/ 978-3-030-25506-0_18

Kumar, A., & Prasad, M. N. V. (2019). Plant Genetic Engineering Approach for the Pb and Zn Remediation. In Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids (pp. 359–380). Elsevier. https://doi.org/10.1016/B978-0-12-814389-6.00017-1

Kumar, S., Prasad, S., Yadav, K. K., Shrivastava, M., Gupta, N., Nagar, S., Bach, Q.-V., Kamyab, H., Khan, S. A., Yadav, S., & Malav, L. C. (2019). Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches - A review. Environmental Research, 179, 108792. https://doi.org/10.1016/j.envres.2019.108792

Kumar Yadav, K., Gupta, N., Kumar, A., Reece, L. M., Singh, N., Rezania, S., & Ahmad Khan, S. (2018). Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecological Engineering, 120, 274–298. https://doi.org/10.1016/j.ecoleng.2018.05.039

La Maestra, S., De Flora, S., & Micale, R. T. (2015). Effect of cigarette smoke on DNA damage, oxidative stress, and morphological alterations in mouse testis and spermatozoa. International Journal of Hygiene and Environmental Health, 218(1), 117–122. https://doi.org/10.1016/j.ijheh.2014.08.006

Lee, J.-W., Choi, H., Hwang, U.-K., Kang, J.-C., Kang, Y. J., Kim, K. Il, & Kim, J.-H. (2019). Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review. Environmental Toxicology and Pharmacology, 68, 101–108. https://doi.org/10.1016/j.etap.2019.03.010

Liu, Z.-H., Shang, J., Yan, L., Wei, T., Xiang, L., Wang, H.-L., Cheng, J., & Xiao, G. (2020). Oxidative stress caused by lead (Pb) induces iron deficiency in Drosophila melanogaster. Chemosphere, 243, 125428. https://doi.org/10.1016/ j.chemosphere.2019.125428

Luthviatin, N., Setiani, O., Widjanarko, B., Rahfiludin, M. Z., Kartini, A., & Raharjo, M. (2024). Risk factors of metabolic syndrome in women of reproductive age at mining area. International Journal of Public Health Science (IJPHS), 13(4), 1960. https://doi.org/10.11591/ijphs.v13i4.24468

Malik, A., Ashraf, M. A. B., Khan, M. W., Zahid, A., Shafique, H., Waquar, S., Gan, S. H., & Ashraf, M. (2020). Implication of Physiological and Biochemical Variables of Prognostic Importance in Lead Exposed Subjects. Archives of Environmental Contamination and Toxicology, 78(3), 329–336. https://doi.org/10.1007/s00244-019-00673-2

Neto, F. T. L., Bach, P. V., Najari, B. B., Li, P. S., & Goldstein, M. (2016). Spermatogenesis in humans and its affecting factors. Seminars in Cell & Developmental Biology, 59, 10–26. https://doi.org/10.1016/j.semcdb.2016.04.009

Nguyen, H. D., Oh, H., Hoang, N. H. M., & Kim, M.-S. (2021). Association between heavy metals, high-sensitivity C-reaction protein and 10-year risk of cardiovascular diseases among adult Korean population. Scientific Reports, 11(1), 14664. https://doi.org/10.1038/s41598-021-94158-9

Okereafor, U., Makhatha, M., Mekuto, L., Uche-Okereafor, N., Sebola, T., & Mavumengwana, V. (2020). Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health. International Journal of Environmental Research and Public Health, 17(7), 2204. https://doi.org/10.3390/ijerph17072204

Olana, A. T., Kumie, A., & Abegaz, T. (2022). Blood lead level among battery factory workers in low and middle-income countries: Systematic review and meta-analysis. Frontiers in Public Health, 10. https://doi.org/10.3389/ fpubh.2022.970660

Olufemi, A. C., Mji, A., & Mukhola, M. S. (2022). Potential Health Risks of Lead Exposure from Early Life through Later Life: Implications for Public Health Education. International Journal of Environmental Research and Public Health, 19(23), 16006. https://doi.org/10.3390/ijerph192316006

Otieno, J., Kowal, P., & Mąkinia, J. (2022). Monitoring Lead Concentration in the Surrounding Environmental Components of a Lead Battery Company: Plants, Air and Effluents—Case Study, Kenya. International Journal of Environmental Research and Public Health, 19(9), 5195. https://doi.org/10.3390/ijerph19095195

Queiroz, E. K. R. de, & Waissmann, W. (2006). Occupational exposure and effects on the male reproductive system. Cadernos de Saúde Pública, 22(3), 485–493. https://doi.org/10.1590/S0102-311X2006000300003

Quintanilla-Vega, B., Hoover, D. J., Bal, W., Silbergeld, E. K., Waalkes, M. P., & Anderson, L. D. (2000). Lead Interaction with Human Protamine (HP2) as a Mechanism of Male Reproductive Toxicity. Chemical Research in Toxicology, 13(7), 594–600. https://doi.org/10.1021/tx000017v

Ramana, K. V., Srivastava, S., & Singhal, S. S. (2019). Lipid Peroxidation Products in Human Health and Disease 2019. Oxidative Medicine and Cellular Longevity, 2019, 1–2. https://doi.org/10.1155/2019/7147235

Ravibabu, K., Bagepally, B., & Barman, T. (2019). Association of musculoskeletal disorders and inflammation markers in workers exposed to lead (Pb) from Pb-battery manufacturing plant. Indian Journal of Occupational and Environmental Medicine, 23(2), 68. https://doi.org/10.4103/ijoem.IJOEM_192_18

Renaudin, X. (2021). Reactive oxygen species and DNA damage response in cancer (pp. 139–161). https://doi.org/10.1016/bs.ircmb.2021.04.001

Singh, C., Singh, R., & Shekhar, A. (2024). Effects of Lead: Neurological and Cellular Perspective (pp. 17–33). https://doi.org/10.1007/978-3-031-46146-0_2

Sirivarasai, J., Wananukul, W., Kaojarern, S., Chanprasertyothin, S., Thongmung, N., Ratanachaiwong, W., Sura, T., & Sritara, P. (2013). Association between Inflammatory Marker, Environmental Lead Exposure, and Glutathione S-Transferase Gene. BioMed Research International, 2013, 1–6. https://doi.org/10.1155/2013/474963

Słota, M., Wąsik, M., Stołtny, T., Machoń-Grecka, A., & Kasperczyk, S. (2022). Effects of environmental and occupational lead toxicity and its association with iron metabolism. Toxicology and Applied Pharmacology, 434, 115794. https://doi.org/10.1016/j.taap.2021.115794

Susiani, & Lestari, M. W. (2022). Hubungan kadar tımbal dalam darah dengan kadar hemoglobın pada operator SPBU Gombel Semarang. Jurnal Surya Medika, 8(3), 138–145. http://journal.umpalangkaraya.ac.id/index.php/jsm

Tejchman, K., Kotfis, K., & Sieńko, J. (2021). Biomarkers and Mechanisms of Oxidative Stress—Last 20 Years of Research with an Emphasis on Kidney Damage and Renal Transplantation. International Journal of Molecular Sciences, 22(15), 8010. https://doi.org/10.3390/ijms22158010

Vural Aydın, S. (2024). Relatıonshıp of lead wıth free radıcals, reactıve oxygen specıes, oxıdatıve stress and antıoxıdant enzymes. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, 13(1), 52–62. https://doi.org/10.18036/estubtdc.1236273

Wieloch, M., Kamiński, P., Ossowska, A., Koim-Puchowska, B., Stuczyński, T., Kuligowska-Prusińska, M., Dymek, G., Mańkowska, A., & Odrowąż-Sypniewska, G. (2012). Do toxic heavy metals affect antioxidant defense mechanisms in humans? Ecotoxicology and Environmental Safety, 78, 195–205. https://doi.org/10.1016/j.ecoenv.2011.11.017

Yan, L. L., & Zaher, H. S. (2019). How do cells cope with RNA damage and its consequences? Journal of Biological Chemistry, 294(41), 15158–15171. https://doi.org/10.1074/jbc.REV119.006513

Yang, C., Li, Y., Ding, R., Xing, H., Wang, R., & Zhang, M. (2022). Lead exposure as a causative factor for metabolic associated fatty liver disease (MAFLD) and a lead exposure related nomogram for MAFLD prevalence. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.1000403

Zhang, Y., & Zheng, J. (2020). Bioinformatics of Metalloproteins and Metalloproteomes. Molecules, 25(15), 3366. https://doi.org/10.3390/molecules 25153366

Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M., & Anjum, M. Z. (2019). Lead toxicity in plants: Impacts and remediation. Journal of Environmental Management, 250, 109557. https://doi.org/10.1016/ j.jenvman.2019.109557.

Downloads

Published

2025-06-13

How to Cite

Maryam, N. S., Susilowati, I. T., Rahayu, K., & Nur Saputro, R. A. (2025). Impact of Lead (Pb) Exposure on Hematological Parameters, hs-CRP, Ferritin, and Oxidative Stress (MDA) in Battery Factory Workers. Medical Laboratory Technology Journal, 11(1), 21–33. https://doi.org/10.31964/mltj.v11i1.629

Issue

Section

Articles