Amino Acid Mutations of OprD Protein in Pseudomonas aeruginosa After Meropenem Exposure

Authors

  • Agus Evendi Department of Medical Laboratory Technology, Poltekkes Kemenkes Kalimantan Timur, Indonesia
  • Tiara Dini Harlita Department of Medical Laboratory Technology, Poltekkes Kemenkes Kalimantan Timur, Indonesia
  • Sresta Azahra Department of Medical Laboratory Technology, Poltekkes Kemenkes Kalimantan Timur, Indonesia

DOI:

https://doi.org/10.31964/mltj.v11i1.646

Keywords:

Pseudomonas aeruginosa, carbapenem resistance, OprD mutation, meropenem exposure

Abstract

Pseudomonas aeruginosa is a gram-negative pathogen associated with nosocomial infections and increased resistance to carbapenems, often linked to porin OprD inactivation. This study aimed to analyse amino acid substitutions in the OprD protein of two meropenem-sensitive Pseudomonas aeruginosa isolates (AK36 and AK237b) after 12 days of in vitro exposure to subinhibitory meropenem concentration (0.5 µg/mL). DNA was extracted at three time points (days 0, 5, and 12) and the oprD gene was sequenced using Sanger sequencing. Protein sequences were aligned and modelled using Swiss-Model to identify mutations and to assess structural changes. By day 12, AK36 had Gln67Lys and Gly68Ser substitutions, whereas AK237b had Glu169Lys. Structural modelling suggests these mutations may alter porin conformation and reduce membrane permeability. Despite no increase in the MIC, oprD expression was suppressed, indicating early adaptation. These findings support the hypothesis that prolonged meropenem pressure induces molecular changes that precede phenotypic resistance. This study highlights the importance of monitoring porin mutations as an early indicator of carbapenem resistance in clinical microbiology. This could help to improve antibiotic stewardship by identifying isolates at risk of developing resistance before it becomes clinically apparent.

References

Bassetti, M., Croxatto, A., Guery, B., Russo, A., Vena, A., & Calandra, T. (2018). Rational approach in the management of Pseudomonas aeruginosa infections. Current Opinion in Infectious Diseases, 31(6), 578–586. https://doi.org/10.1097/qco.0000000000000505

Bisht, K., Wakeman, C. A., Skaar, E. P., Moore, J. L., & Caprioli, R. M. (2021). Impact of temperature-dependent phage expression on Pseudomonas aeruginosa biofilm formation. NPJ Biofilms and Microbiomes, 7(1). https://doi.org/10.1038/ s41522-021-00194-8

Blair, J. M. A., Baylay, A. J., Piddock, L. J. V., Ogbolu, D. O., & Webber, M. A. (2014). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380

Castanheira, M., Hubler, C. M., Doyle, T. B., Devries, S., & Shortridge, D. (2023). Vaborbactam increases meropenem susceptibility in Pseudomonas aeruginosa clinical isolates displaying MexXY and AmpC upregulation. mSphere, 8(5). https://doi.org/10.1128/msphere.00162-23

Da Cruz Nizer, W. S., Inkovskiy, V., Cassol, E., Strempel, N., Versey, Z., & Overhage, J. (2021). Oxidative stress response in Pseudomonas aeruginosa. Pathogens, 10(9), 1187. https://doi.org/10.3390/pathogens10091187

Epp, S. F., Köhler, T., Frey, J., Plésiat, P., Michéa-Hamzehpour, M., & Pechère, J.-C. (2001). C-terminal region of Pseudomonas aeruginosa outer membrane porin OprD modulates susceptibility to meropenem. Antimicrobial Agents and Chemotherapy, 45(6), 1780–1787. https://doi.org/10.1128/aac.45.6.1780-1787.2001

Evendi, A., Karuniawati, A., Ibrahim, F., & Asmarinah, A. (2024). Genetic and phenotypic of Pseudomonas aeruginosa sensitive to meropenem antibiotics after exposure to meropenem. Iranian Journal of Microbiology, 16(3). https://doi.org/10.18502/ijm.v16i3.15760.

Fuhs, D. T., Rogers, K. E., Tait, J. R., Oliver, A., López-Causapé, C., Nation, R. L., Lee, W. L., Shackleford, D. M., Landersdorfer, C. B., & Cortés-Lara, S. (2024). Elucidating effects of single and multiple resistance mechanisms on bacterial response to meropenem by quantitative and systems pharmacology modeling and population genomics. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.02.17.579784

Glen, K. A., & Lamont, I. L. (2021). β-lactam resistance in Pseudomonas aeruginosa: Current status, future prospects. Pathogens, 10(12), 1638. https://doi.org/ 10.3390/pathogens10121638

Hujer, A. M., Winkler, M. L., Bonomo, R. A., Domitrovic, T. N., Abdelhamed, A. M., Painter, R. E., Mack, A. R., Jacobs, M. R., Bethel, C. R., Clarke, T., D’Souza, R., Young, K., White, R. C., Taracila, M. A., Watkins, R. R., Fouts, D. E., Rojas, L. J., & Marshall, S. H. (2022). Imipenem/relebactam resistance in clinical isolates of extensively drug resistant Pseudomonas aeruginosa: Inhibitor-resistant β-lactamases and their increasing importance. Antimicrobial Agents and Chemotherapy, 66(5). https://doi.org/10.1128/aac.01790-21

Kao, C.-Y., Chen, S.-S., Yan, J.-J., Wu, H.-M., Hung, K.-H., Hsueh, P.-R., & Wu, J.-J. (2016). Overproduction of active efflux pump and variations of OprD dominate in imipenem-resistant Pseudomonas aeruginosa isolated from patients with bloodstream infections in Taiwan. BMC Microbiology, 16(1). https://doi.org/10.1186/s12866-016-0719-2

Kim, N., Lee, D. E., Kim, Y. K., Lee, J. C., Park, S. Y., Kwon, K. T., Ko, S. Y., Lee, J. C., Kim, Y. K., Kwon, K. T., & Kim, S. Y. (2024). Clonal distribution and its association with the carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa isolates from Korean Hospitals. Annals of Laboratory Medicine, 44(5), 410–417. https://doi.org/10.3343/ alm.2023.0369

Lee, J.-Y., & Ko, K. S. (2012). OprD mutations and inactivation, expression of efflux pumps and AmpC, and metallo-β-lactamases in carbapenem-resistant Pseudomonas aeruginosa isolates from South Korea. International Journal of Antimicrobial Agents, 40(2), 168–172. https://doi.org/10.1016/j.ijantimicag. 2012.04.004

Lister, P. D., Wolter, D. J., & Hanson, N. D. (2009). Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clinical Microbiology Reviews, 22(4), 582–610. https://doi.org/10.1128/cmr.00040-09

Liu, Z., Chen, S., Li, T., Huang, J., Xu, Z., Xu, Z., Zhang, L.-H., & Duan, C. (2022). CzcR Is Essential for Swimming Motility in Pseudomonas aeruginosa during Zinc Stress. Microbiology Spectrum, 10(6). https://doi.org/10.1128/spectrum. 02846-22

Motta, S., Vecchietti, D., Di Silvestre, D., Polissi, A., Mauri, P., Bertoni, G., Brunetti, P., & Martorana, A. M. (2020). The landscape of Pseudomonas aeruginosa membrane-associated proteins. Cells, 9(11), 2421. https://doi.org/10.3390/ cells9112421

Ng, M. Y., Li, H., Ghelfi, M. D., Goldman, Y. E., & Cooperman, B. S. (2021). Ataluren and aminoglycosides stimulate read-through of nonsense codons by orthogonal mechanisms. Proceedings of the National Academy of Sciences, 118(2). https://doi.org/10.1073/pnas.2020599118

Ocampo-Sosa, A. A., Oliver, A., Domínguez, M. A., Macia, M. D., Peña, C., Cabot, G., Martínez-Martínez, L., Zamorano, L., Moncalián, G., Roman, E., Rodríguez, C., Tubau, F., Suárez, C., & Moya, B. (2012). Alterations of OprD in carbapenem-intermediate and -susceptible strains of Pseudomonas aeruginosa isolated from patients with bacteremia in a Spanish multicenter study. Antimicrobial Agents and Chemotherapy, 56(4), 1703–1713. https://doi.org/10.1128/ aac.05451-11

Poole, K. (2011). Pseudomonas Aeruginosa: Resistance to the Max. Frontiers in Microbiology, 2(Suppl 1). https://doi.org/10.3389/fmicb.2011.00065

Qin, S., Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., Liang, H., Song, X., & Wu, M. (2022). Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/s41392-022-01056-1

Stanton, R. A., Schutz, K., Mounsey, J., Halpin, A. L., Lynfield, R., Campbell, D., Dumyati, G., Li, L., Cassidy, P. M., Adamczyk, M., Breaker, E., Lutgring, J. D., Vaeth, E., Hancock, E. B., Karlsson, M., Grass, J. E., Tsay, R., Walters, M. S., Vagnone, P., … Bulens, S. (2022). Whole-genome sequencing reveals diversity of carbapenem-resistant Pseudomonas aeruginosa collected through CDC’s emerging infections program, United States, 2016-2018. Antimicrobial Agents and Chemotherapy, 66(9). https://doi.org/10.1128/ aac.00496-22

Teo, J. Q.-M., Tang, C. Y., Lim, J. C., Lee, S. J.-Y., Tan, S. H., Koh, T.-H., Sim, J. H.-C., Tan, T.-T., Kwa, A. L.-H., & Ong, R. T.-H. (2021). Genomic characterization of carbapenem-non-susceptible Pseudomonas aeruginosa in Singapore. Emerging Microbes & Infections, 10(1), 1706–1716. https://doi.org/10.1080/ 22221751.2021.1968318

Wang, M., Zhang, Y., Pei, F., Liu, Y., & Zheng, Y. (2025). Loss of OprD function is sufficient for carbapenem-resistance-only but insufficient for multidrug resistance in Pseudomonas aeruginosa. BMC Microbiology, 25(1). https://doi.org/10.1186/s12866-025-03935-3

Wu, W., Huang, J., & Xu, Z. (2024). Antibiotic influx and efflux in Pseudomonas aeruginosa: Regulation and therapeutic implications. Microbial Biotechnology, 17(5). https://doi.org/10.1111/1751-7915.14487

Yano, H., Anzai, E., Yahara, K., Zuo, H., Aoki, S., Sugawara, Y., Hirabayashi, A., Kayama, S., Hayashi, W., Sugai, M., Kajihara, T., Kitamura, N., Kawakami, S., & Tamma, P. D. (2024). Nationwide genome surveillance of carbapenem-resistant Pseudomonas aeruginosa in Japan. Antimicrobial Agents and Chemotherapy, 68(5). https://doi.org/10.1128/aac.01669-23

Zhao, Y., Wang, J., Guo, J., Jelsbak, L., Chen, S., Chen, D., Chen, E., Xie, L., Chen, K., Chan, E. W. C., Xie, M., & Chen, W. (2023). Epidemiological and genetic characteristics of clinical carbapenem-resistant Pseudomonas aeruginosa strains in Guangdong Province, China. Microbiology Spectrum, 11(3). https://doi.org/10.1128/spectrum.04261-22.

Downloads

Published

2025-06-13

How to Cite

Evendi, A., Harlita, T. D., & Azahra, S. (2025). Amino Acid Mutations of OprD Protein in Pseudomonas aeruginosa After Meropenem Exposure. Medical Laboratory Technology Journal, 11(1), 72–81. https://doi.org/10.31964/mltj.v11i1.646

Issue

Section

Articles