Amino Acid Mutations of OprD Protein in Pseudomonas aeruginosa After Meropenem Exposure
DOI:
https://doi.org/10.31964/mltj.v11i1.646Keywords:
Pseudomonas aeruginosa, carbapenem resistance, OprD mutation, meropenem exposureAbstract
Pseudomonas aeruginosa is a gram-negative pathogen associated with nosocomial infections and increased resistance to carbapenems, often linked to porin OprD inactivation. This study aimed to analyse amino acid substitutions in the OprD protein of two meropenem-sensitive Pseudomonas aeruginosa isolates (AK36 and AK237b) after 12 days of in vitro exposure to subinhibitory meropenem concentration (0.5 µg/mL). DNA was extracted at three time points (days 0, 5, and 12) and the oprD gene was sequenced using Sanger sequencing. Protein sequences were aligned and modelled using Swiss-Model to identify mutations and to assess structural changes. By day 12, AK36 had Gln67Lys and Gly68Ser substitutions, whereas AK237b had Glu169Lys. Structural modelling suggests these mutations may alter porin conformation and reduce membrane permeability. Despite no increase in the MIC, oprD expression was suppressed, indicating early adaptation. These findings support the hypothesis that prolonged meropenem pressure induces molecular changes that precede phenotypic resistance. This study highlights the importance of monitoring porin mutations as an early indicator of carbapenem resistance in clinical microbiology. This could help to improve antibiotic stewardship by identifying isolates at risk of developing resistance before it becomes clinically apparent.References
Bassetti, M., Croxatto, A., Guery, B., Russo, A., Vena, A., & Calandra, T. (2018). Rational approach in the management of Pseudomonas aeruginosa infections. Current Opinion in Infectious Diseases, 31(6), 578–586. https://doi.org/10.1097/qco.0000000000000505
Bisht, K., Wakeman, C. A., Skaar, E. P., Moore, J. L., & Caprioli, R. M. (2021). Impact of temperature-dependent phage expression on Pseudomonas aeruginosa biofilm formation. NPJ Biofilms and Microbiomes, 7(1). https://doi.org/10.1038/ s41522-021-00194-8
Blair, J. M. A., Baylay, A. J., Piddock, L. J. V., Ogbolu, D. O., & Webber, M. A. (2014). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380
Castanheira, M., Hubler, C. M., Doyle, T. B., Devries, S., & Shortridge, D. (2023). Vaborbactam increases meropenem susceptibility in Pseudomonas aeruginosa clinical isolates displaying MexXY and AmpC upregulation. mSphere, 8(5). https://doi.org/10.1128/msphere.00162-23
Da Cruz Nizer, W. S., Inkovskiy, V., Cassol, E., Strempel, N., Versey, Z., & Overhage, J. (2021). Oxidative stress response in Pseudomonas aeruginosa. Pathogens, 10(9), 1187. https://doi.org/10.3390/pathogens10091187
Epp, S. F., Köhler, T., Frey, J., Plésiat, P., Michéa-Hamzehpour, M., & Pechère, J.-C. (2001). C-terminal region of Pseudomonas aeruginosa outer membrane porin OprD modulates susceptibility to meropenem. Antimicrobial Agents and Chemotherapy, 45(6), 1780–1787. https://doi.org/10.1128/aac.45.6.1780-1787.2001
Evendi, A., Karuniawati, A., Ibrahim, F., & Asmarinah, A. (2024). Genetic and phenotypic of Pseudomonas aeruginosa sensitive to meropenem antibiotics after exposure to meropenem. Iranian Journal of Microbiology, 16(3). https://doi.org/10.18502/ijm.v16i3.15760.
Fuhs, D. T., Rogers, K. E., Tait, J. R., Oliver, A., López-Causapé, C., Nation, R. L., Lee, W. L., Shackleford, D. M., Landersdorfer, C. B., & Cortés-Lara, S. (2024). Elucidating effects of single and multiple resistance mechanisms on bacterial response to meropenem by quantitative and systems pharmacology modeling and population genomics. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.02.17.579784
Glen, K. A., & Lamont, I. L. (2021). β-lactam resistance in Pseudomonas aeruginosa: Current status, future prospects. Pathogens, 10(12), 1638. https://doi.org/ 10.3390/pathogens10121638
Hujer, A. M., Winkler, M. L., Bonomo, R. A., Domitrovic, T. N., Abdelhamed, A. M., Painter, R. E., Mack, A. R., Jacobs, M. R., Bethel, C. R., Clarke, T., D’Souza, R., Young, K., White, R. C., Taracila, M. A., Watkins, R. R., Fouts, D. E., Rojas, L. J., & Marshall, S. H. (2022). Imipenem/relebactam resistance in clinical isolates of extensively drug resistant Pseudomonas aeruginosa: Inhibitor-resistant β-lactamases and their increasing importance. Antimicrobial Agents and Chemotherapy, 66(5). https://doi.org/10.1128/aac.01790-21
Kao, C.-Y., Chen, S.-S., Yan, J.-J., Wu, H.-M., Hung, K.-H., Hsueh, P.-R., & Wu, J.-J. (2016). Overproduction of active efflux pump and variations of OprD dominate in imipenem-resistant Pseudomonas aeruginosa isolated from patients with bloodstream infections in Taiwan. BMC Microbiology, 16(1). https://doi.org/10.1186/s12866-016-0719-2
Kim, N., Lee, D. E., Kim, Y. K., Lee, J. C., Park, S. Y., Kwon, K. T., Ko, S. Y., Lee, J. C., Kim, Y. K., Kwon, K. T., & Kim, S. Y. (2024). Clonal distribution and its association with the carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa isolates from Korean Hospitals. Annals of Laboratory Medicine, 44(5), 410–417. https://doi.org/10.3343/ alm.2023.0369
Lee, J.-Y., & Ko, K. S. (2012). OprD mutations and inactivation, expression of efflux pumps and AmpC, and metallo-β-lactamases in carbapenem-resistant Pseudomonas aeruginosa isolates from South Korea. International Journal of Antimicrobial Agents, 40(2), 168–172. https://doi.org/10.1016/j.ijantimicag. 2012.04.004
Lister, P. D., Wolter, D. J., & Hanson, N. D. (2009). Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clinical Microbiology Reviews, 22(4), 582–610. https://doi.org/10.1128/cmr.00040-09
Liu, Z., Chen, S., Li, T., Huang, J., Xu, Z., Xu, Z., Zhang, L.-H., & Duan, C. (2022). CzcR Is Essential for Swimming Motility in Pseudomonas aeruginosa during Zinc Stress. Microbiology Spectrum, 10(6). https://doi.org/10.1128/spectrum. 02846-22
Motta, S., Vecchietti, D., Di Silvestre, D., Polissi, A., Mauri, P., Bertoni, G., Brunetti, P., & Martorana, A. M. (2020). The landscape of Pseudomonas aeruginosa membrane-associated proteins. Cells, 9(11), 2421. https://doi.org/10.3390/ cells9112421
Ng, M. Y., Li, H., Ghelfi, M. D., Goldman, Y. E., & Cooperman, B. S. (2021). Ataluren and aminoglycosides stimulate read-through of nonsense codons by orthogonal mechanisms. Proceedings of the National Academy of Sciences, 118(2). https://doi.org/10.1073/pnas.2020599118
Ocampo-Sosa, A. A., Oliver, A., Domínguez, M. A., Macia, M. D., Peña, C., Cabot, G., Martínez-Martínez, L., Zamorano, L., Moncalián, G., Roman, E., Rodríguez, C., Tubau, F., Suárez, C., & Moya, B. (2012). Alterations of OprD in carbapenem-intermediate and -susceptible strains of Pseudomonas aeruginosa isolated from patients with bacteremia in a Spanish multicenter study. Antimicrobial Agents and Chemotherapy, 56(4), 1703–1713. https://doi.org/10.1128/ aac.05451-11
Poole, K. (2011). Pseudomonas Aeruginosa: Resistance to the Max. Frontiers in Microbiology, 2(Suppl 1). https://doi.org/10.3389/fmicb.2011.00065
Qin, S., Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., Liang, H., Song, X., & Wu, M. (2022). Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/s41392-022-01056-1
Stanton, R. A., Schutz, K., Mounsey, J., Halpin, A. L., Lynfield, R., Campbell, D., Dumyati, G., Li, L., Cassidy, P. M., Adamczyk, M., Breaker, E., Lutgring, J. D., Vaeth, E., Hancock, E. B., Karlsson, M., Grass, J. E., Tsay, R., Walters, M. S., Vagnone, P., … Bulens, S. (2022). Whole-genome sequencing reveals diversity of carbapenem-resistant Pseudomonas aeruginosa collected through CDC’s emerging infections program, United States, 2016-2018. Antimicrobial Agents and Chemotherapy, 66(9). https://doi.org/10.1128/ aac.00496-22
Teo, J. Q.-M., Tang, C. Y., Lim, J. C., Lee, S. J.-Y., Tan, S. H., Koh, T.-H., Sim, J. H.-C., Tan, T.-T., Kwa, A. L.-H., & Ong, R. T.-H. (2021). Genomic characterization of carbapenem-non-susceptible Pseudomonas aeruginosa in Singapore. Emerging Microbes & Infections, 10(1), 1706–1716. https://doi.org/10.1080/ 22221751.2021.1968318
Wang, M., Zhang, Y., Pei, F., Liu, Y., & Zheng, Y. (2025). Loss of OprD function is sufficient for carbapenem-resistance-only but insufficient for multidrug resistance in Pseudomonas aeruginosa. BMC Microbiology, 25(1). https://doi.org/10.1186/s12866-025-03935-3
Wu, W., Huang, J., & Xu, Z. (2024). Antibiotic influx and efflux in Pseudomonas aeruginosa: Regulation and therapeutic implications. Microbial Biotechnology, 17(5). https://doi.org/10.1111/1751-7915.14487
Yano, H., Anzai, E., Yahara, K., Zuo, H., Aoki, S., Sugawara, Y., Hirabayashi, A., Kayama, S., Hayashi, W., Sugai, M., Kajihara, T., Kitamura, N., Kawakami, S., & Tamma, P. D. (2024). Nationwide genome surveillance of carbapenem-resistant Pseudomonas aeruginosa in Japan. Antimicrobial Agents and Chemotherapy, 68(5). https://doi.org/10.1128/aac.01669-23
Zhao, Y., Wang, J., Guo, J., Jelsbak, L., Chen, S., Chen, D., Chen, E., Xie, L., Chen, K., Chan, E. W. C., Xie, M., & Chen, W. (2023). Epidemiological and genetic characteristics of clinical carbapenem-resistant Pseudomonas aeruginosa strains in Guangdong Province, China. Microbiology Spectrum, 11(3). https://doi.org/10.1128/spectrum.04261-22.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Agus Evendi, Tiara Dini Harlita, Sresta Azahra

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Publishing your paper with Medical Laboratory Technology Journal (MLTJ) means that the author or authors retain the copyright in the paper. MLTJ granted an author(s) rights to put the paper onto a website, distribute it to colleagues, give it to students, use it in your thesis etc, even commercially. The author(s) can reuse the figures and tables and other information contained in their paper published by MLTJ in future papers or work without having to ask anyone for permission, provided that the figures, tables or other information that is included in the new paper or work properly references the published paper as the source of the figures, tables or other information, and the new paper or work is not direct at private monetary gain or commercial advantage.
MLTJ journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. This journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets others remix, transform, and build upon the material for any purpose, even commercially. MLTJ journal Open Access articles are distributed under this Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA). Articles can be read and shared for All purposes under the following conditions:
BY: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.SA: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.