Antithrombotic Activity and Hemolysis Pattern of Fibrinolytic Protease-Producing Bacterial Isolates from the Coast of Tanjung Dewa, South Kalimantan

Authors

  • Leka Lutpiatina Medical Laboratory Technology Poltekkes Kemenkes Banjarmasin, Indonesia
  • Ratih Dewi Dwiyanti Medical Laboratory Technology, Poltekkes Kemenkes Banjarmasin, Indonesia
  • Aima Insana Medical Laboratory Technology, Poltekkes Kemenkes Banjarmasin, Indonesia
  • Muhammad Rizal Medical Laboratory Technology Poltekkes Kemenkes Banjarmasin, Indonesia
  • Muhammad Mufid Medical Laboratory Technology Poltekkes Kemenkes Banjarmasin, Indonesia

DOI:

https://doi.org/10.31964/mltj.v11i2.689

Keywords:

Anticoagulant, antithrombosis, fibrinolytic bacteria, hemolysis, Tanjung Dewa Beach

Abstract

Cardiovascular disease is a leading cause of death worldwide, with thrombosis playing a key role in the pathological process. Conventional antithrombotic therapy often causes side effects, necessitating alternatives based on biological resources. Marine microorganisms are known to produce fibrinolytic protease enzymes that can degrade fibrin and prevent blood clot formation. This study aimed to evaluate the differences in antithrombotic activity and hemolysis patterns of fibrinolytic protease-producing bacterial isolates obtained from the coast of Tanjung Dewa Beach, South Kalimantan. A total of 15 isolates were obtained from seawater, beach sand, mollusks, crabs, and barnacles, and then subjected to colony morphology identification, Gram staining, and spore observation. Proteolytic activity testing using Skim Milk Agar media showed that all isolates had proteolytic activity with varying indices, with PSR1 showing the highest index (3.4). Furthermore, fibrinolytic testing using the fibrin plate assay method showed that 10 isolates were capable of degrading fibrin, with AL8 and SP2 showing the highest fibrinolytic indices (3.12 and 3.11, respectively). Antithrombotic testing using the clot lysis method revealed that AL7 and SP1 exhibited the highest lysis percentages (82.05% and 88.88%, respectively). Anticoagulant activity, as determined by the Lee-White method, showed that SP2 significantly prolonged the coagulation time (142 seconds, 49.65%). Hemolysis pattern testing revealed variations in activity, with AL8 and PSR1 classified as gamma-hemolytic and therefore potentially safer. Statistical analysis showed no significant differences between isolates in terms of antithrombotic activity, anticoagulant activity, or hemolysis pattern (p > 0.05). These findings suggest that coastal bacterial isolates from Tanjung Dewa Beach, particularly AL8 and SP2, have the potential to serve as safe, natural antithrombotic agents, supporting the development of biomedical therapies for cardiovascular disease.

References

Abdurrahman, S., Suyanto, Rahman, M., & Fatmawati. (2020). Analisis struktur komunitas makrozoobenthos pada mikroekosistem tidepool terhadap kualitas perairan di Pantai Tanjung Dewa. Jurnal Akrab Juara, 5(3), 198–208.

Abecia, L. (2015). Isolation of spore-forming bacteria from hypersaline environments. Journal of Basic Microbiology, 55(8), 1002–1011. https://doi.org/10.1002/jobm.201500015

Afriansyah, A. (2024). Efek antitrombosis ekstrak protease fibrinolitik asal isolat Staphylococcus hominis HSFT-2. Health and Medical Journal, 6(1), 13–18. https://doi.org/10.33854/heme.v6i1.1378

Afriansyah, M. A., & Ethica, S. N. (2023). Fibrinolytic protease-producing bacteria with varied hemolysis patterns associated with marine algae Dictyota sp. Medical Laboratory Technology Journal, 9(2), 101–112. https://doi.org/10.31964/mltj.v9i2.525

Agrebi, R., Haddar, A., Hmidet, N., Jellouli, K., Manni, L., & Nasri, M. (2009). BSF1 fibrinolytic enzyme from a marine bacterium Bacillus subtilis A26: Purification, biochemical, and molecular characterization. Process Biochemistry, 44(11), 1252–1259. https://doi.org/10.1016/j.procbio.2009.06.024

Altaf, F., Wu, S., & Kasim, V. (2021). Role of fibrinolytic enzymes in anti-thrombosis therapy. Frontiers in Molecular Biosciences, 8, 680397. https://doi.org/10.3389/fmolb.2021.680397

Amaliah, Z., Bahri, S., & Amelia, P. (2018). Isolasi dan karakterisasi bakteri asam laktat dari limbah cair rendaman kacang kedelai. Jurnal Fitofarmaka Indonesia, 5, 253–257. https://doi.org/10.33096/jffi.v5i1.320

Arnosti, C. (2011). Microbial extracellular enzymes and the marine carbon cycle. Annual Review of Marine Science, 3, 401–425. https://doi.org/10.1146/annurev-marine-120709-142731

Asril, M., & Leksikowati, S. S. (2019). Isolasi dan seleksi bakteri proteolitik asal limbah cair tahu sebagai dasar penentuan agen pembuatan biofertilizer. Elkawnie Journal of Islamic Science and Technology, 5(2), 86–99.

Azam, F., & Malfatti, F. (2007). Microbial structuring of marine ecosystems. Nature Reviews Microbiology, 5(10), 782–791. https://doi.org/10.1038/nrmicro1747

Baehaki, A., Rinto, R., & Budiman, A. (2011). Isolation and characterization of proteases from Indralaya soil swamp bacteria, South Sumatera. Microbiology Indonesia, 5(1), 12–18.

Berlanga, M. (2010). Brock biology of microorganisms (11th ed.). Pearson Education.

Boon, L., Ugarte Berzal, E., Vandooren, J., & Opdenakker, G. (2020). Protease propeptide structures, mechanisms of activation, and functions. Critical Reviews in Biochemistry and Molecular Biology, 55, 1–55. https://doi.org/10.1080/10409238.2020.1742090

Cahyaningrum, E., Wijanarka, W., & Lunggani, A. (2021). Isolasi dan pengaruh monosodium glutamat terhadap pertumbuhan bakteri proteolitik limbah cair tahu. Bioma: Berkala Ilmiah Biologi, 23, 84–90. https://doi.org/10.14710/bioma.23.2.84-90

Cappuccino, J. G., & Sherman, N. (2013). Microbiology: A laboratory manual (10th ed.). Pearson Education.

Deniyati, D. (2016). Gangguan hematologi dan imunologi. Jakarta, Indonesia: Balai Penerbit FKUI.

Ferdiani, D., Zilda, D. S., Afriansyah, M. A., & Ethica, S. N. (2023). Characteristics and substrate specificity of semi-purified bacterial protease of Bacillus thuringiensis HSFI-12 with potential as an antithrombotic agent. Science and Technology Indonesia, 8(1), 10–16. https://doi.org/10.26554/sti.2023.8.1.10-16

Fuad, H., Hidayati, N., Darmawati, S., Munandar, H., & Sulistyaningtyas, A. R. (2020). Prospects of fibrinolytic proteases of bacteria from sea cucumber fermentation products as antithrombotic agents. E3S Web of Conferences, 147, 02006. https://doi.org/10.1051/e3sconf/202014702006

Gandasoebrata, R. (1992). Penuntun laboratorium klinik (7th ed.). Dian Rakyat.

Geneser, F. (1994). Histology textbook. Jakarta, Indonesia: Binarupa Aksara.

Hidayati, N., Nurrahman, N., Fuad, H., Munandar, H., Zilda, D. S., Ernanto, A. R., Samiasih, A., Oedjijono, O., & Ethica, S. N. (2021). Bacillus tequilensis isolated from fermented intestine of Holothuria scabra produces fibrinolytic protease with thrombolysis activity. IOP Conference Series: Earth and Environmental Science, 707(1). https://doi.org/10.1088/1755-1315/707/1/012008

Huang, S., Pan, S., Chen, G., Huang, S., Zhang, Z., Li, Y., & Liang, Z. (2013). Biochemical characteristics of a fibrinolytic enzyme purified from a marine bacterium Bacillus subtilis HQS-3. International Journal of Biological Macromolecules, 62, 124–130. https://doi.org/10.1016/j.ijbiomac.2013.08.048

Islamiyah, N., Ethica, S., Afriansyah, M., Mukaromah, A., & Zilda, D. S. (2022). The importance of purification and activity analysis of the purified product of thrombolytic protease from Bacillus sp. HSFI-12 – A review. Advances in Biological Sciences Research, 15, 279–285. https://doi.org/10.2991/absr.k.220406.052

Johnson, R. M., Schwent, R. M., & Press, W. (1968). The characteristics and distribution of marine bacteria isolated from the Indian Ocean. Limnology and Oceanography, 13(4), 656–664. https://doi.org/10.4319/lo.1968.13.4.0656

Kartal, V. (2014). A thrombosis story and PRES. Northern Clinics of Istanbul, 1(1), 49–52. https://doi.org/10.14744/nci.2014.25744

Khikmah, N., Astrika, N. R., & Widaryanti, B. (2024). Seleksi bakteri dengan aktivitas fibrinolitik yang diisolasi dari tanah rumah potong ayam. Sciscitatio, 5(1), 1–9. https://doi.org/10.21460/sciscitatio.2024.51.159

Kotb, E. (2014). The biotechnological potential of fibrinolytic enzymes in the dissolution of endogenous blood thrombi. Biotechnology Progress, 30(3), 656–672. https://doi.org/10.1002/btpr.1918

Krishnamurthy, A., & Belur, P. D. (2018). A novel fibrinolytic serine metalloprotease from the marine Serratia marcescens subsp. sakuensis: Purification and characterization. International Journal of Biological Macromolecules, 112, 110–118. https://doi.org/10.1016/j.ijbiomac.2018.01.129

Mahajan, P. M., Nayak, S., & Lele, S. S. (2012). Fibrinolytic enzyme from newly isolated marine bacterium Bacillus subtilis ICTF-1: Media optimization, purification, and characterization. Journal of Bioscience and Bioengineering, 113(3), 307–314. https://doi.org/10.1016/j.jbiosc.2011.10.023

Marder, V. J. (2009). Thrombolytic therapy for deep vein thrombosis: Potential application of plasmin. Thrombosis Research, 123(Suppl. 4), S56–S61. https://doi.org/10.1016/S0049-3848(09)70145-8

Monod, M. (2008). Secreted proteases from dermatophytes. Mycopathologia, 166(5), 285–294.

Muisristanto, D. W. I., & Poernomo, A. T. (2015). Isolasi dan penapisan fibrinolitik jamur tanah hutan mangrove Wonorejo Surabaya. Berkala Ilmiah Kimia Farmasi, 4(2), 11–17.

Nadea, N. S. W. P., Indrayati, A., & Leviana, F. (2023). Potensi ekstrak kasar enzim dari tempe kedelai hitam (Glycine soja (L.) Merr.) sebagai obat fibrinolitik alami dengan metode clot lysis in vitro. Jurnal Sains dan Kesehatan, 5(2), 115–125. https://doi.org/10.25026/jsk.v5i2.1712

Nugraha, G., & Badrawi, I. (2018). Pedoman teknik pemeriksaan laboratorium klinik.

Panicker, S. G., Lendave, A., & Sabale, A. (2022). Soil bacterial isolates showing promising fibrinolytic activity. Journal of Advanced Scientific Research, 13(10), 36–40. Diakses Agustus 2025 dari https://sciensage.info/index.php/JASR/article/view/

Peng, Y., Huang, Q., Zhang, R., & Zhang, Y. (2003). Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Journal of Biotechnology, 134, 45–52.

Prasad, S., Kashyap, R. S., Deopujari, J. Y., Purohit, H. J., Taori, G. M., & Daginawala, H. F. (2006). Development of an in vitro model to study clot lysis activity of thrombolytic drugs. Thrombosis Journal, 4, 14. https://doi.org/10.1186/1477-9560-4-14

Rahmi, Y., Darmawi, D., Abrar, M., Jamin, F., Fakhrurrazi, F., & Fahrimal, Y. (2015). Identifikasi bakteri Staphylococcus aureus pada preputium dan vagina kuda (Equus caballus). Jurnal Medika Veterinaria, 9(2), 187–192.

Rijken, D. C., & Sakharov, D. V. (2000). Molecular transport during fibrin clot lysis. Fibrinolysis and Proteolysis, 14(2), 98–113. https://doi.org/10.1054/fipr.2000.0072

Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M., ... Fuster, V. (2020). Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. Journal of the American College of Cardiology, 76(25), 2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010

Schaeffer, A. B., & Fulton, M. D. (1933). A simplified method of staining endospores. Science, 77(1990), 194. https://doi.org/10.1126/science.77.1990.194

Setiawan, A., Arimurti, S., Senjarini, K., & Sutoyo. (2016). Aktivitas proteolitik dan fibrinolitik isolat bakteri dari perairan Pantai Papuma Kabupaten Jember. Berkala Sainstek, 4(1), 1–4.

Sharma, C., Salem, G. E. M., Sharma, N., Gautam, P., & Singh, R. (2020). Thrombolytic potential of novel thiol-dependent fibrinolytic protease from Bacillus cereus RSA1. Biomolecules, 10(1), 1–23. https://doi.org/10.3390/biom10010003

SKI. (2023). Survei Kesehatan Indonesia dalam angka. Jakarta, Indonesia: Kementerian Kesehatan RI. accessed August 2025 https://www.badankebijakan.kemkes. go.id/ski-2023-dalam-angka/

Sompalli, B., & Malaviya, A. (2024). Purification and evaluation of in vitro activity of a fibrinolytic protease produced by a mangrove isolate Bacillus subtilis AIBL_AMSB2_M7E32. Journal of Applied Biology and Biotechnology, 12(5), 237–242. https://doi.org/10.7324/JABB.2024.175220

Sri Pananjung, A. M., Ulfa, E. U., Senjarini, K., & Arimurti, S. (2016). Karakterisasi isolat bakteri fibrinolitik WU 021055 asal perairan Pantai Papuma, Jember. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 2(1), 1. https://doi.org/10.29122/jbbi.v2i1.528

Suyasa, I. B. O. (2019). Isolasi dan karakteristik morfologi bakteri pada saluran pencernaan ikan kerapu (Cephalopholis miniata) dari perairan Kabupaten Klungkung Bali. Meditory, 7(2), 138–143.

Tangkery, R. A. B., Paransa, D. S., & Rumengan, A. (2013). Uji aktivitas antikoagulan ekstrak mangrove Aegiceras corniculatum. Jurnal Pesisir dan Laut Tropis, 1(1), 7–13. https://doi.org/10.35800/jplt.1.1.2013.1278

Tortora, G. J., Funke, B. R., & Case, C. L. (2015). Microbiology: An introduction (12th ed.). Pearson Education.

Turista, D. A., Swantara, I. M. D., & Puspawati, N. M. (2019). Uji aktivitas antibakteri ekstrak etanol daun salam (Syzygium polyanthum). Jurnal Kimia, 13(2), 169–175.

Tutwiler, V., Mukhitov, A. R., Peshkova, A. D., Le Minh, G., Khismatullin, R., Vicksman, J., ... Weisel, J. W. (2018). Contraction of blood clots is impaired in acute ischemic stroke. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(12), 2590–2599. https://doi.org/10.1161/ATVBAHA.118.311279

Vijayaraghavan, P., & Prakash Vincent, S. G. (2015). A low-cost fermentation medium for potential fibrinolytic enzyme production by a newly isolated marine bacterium Shewanella sp. IND20. Biotechnology Reports, 7, 135–142. https://doi.org/10.1016/j.btre.2015.06.005

Westlund, L. E., & Andersson, L.-O. (1985). Studies on the influence of reactants and buffer environment on clot lysis induced by human plasminogen activators. Thrombosis Research, 37(1), 213–223. https://doi.org/10.1016/0049-3848(85)90048-9

World Health Organization. (2023). SeaHearts to prevent and manage cardiovascular diseases in WHO South-East Asia Region. accessed August 2025 https://www.who.int/southeastasia/news/detail/29-09-2023-seahearts-to-prevent--manage-cardiovascular

Downloads

Published

2025-12-09

How to Cite

Lutpiatina, L., Dwiyanti, R. D., Insana, A., Rizal, M., & Mufid, M. (2025). Antithrombotic Activity and Hemolysis Pattern of Fibrinolytic Protease-Producing Bacterial Isolates from the Coast of Tanjung Dewa, South Kalimantan. Medical Laboratory Technology Journal, 11(2), 235–248. https://doi.org/10.31964/mltj.v11i2.689

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2