Hematological Effects of Vigna unguiculata subsp. cylindrica in Anemic Mice: An Experimental Study
DOI:
https://doi.org/10.31964/mltj.v11i2.687Keywords:
Anemia, Vigna unguiculata subsp. cylindrica, hemoglobin, hematocrit, Nagara BeanAbstract
Anemia is a global health problem that impairs cognitive function, physical performance, and maternal–child health. This study aimed to evaluate the hematological effects of Vigna unguiculata subsp. cylindrica (Nagara Bean) as a potential functional food in sodium nitrite (NaNO₂)-induced anemic mice. Thirty-three male BALB/c mice (8–12 weeks, 25–30 g) were randomly assigned into six groups: normal control (K), negative control (K−, anemia-induced), positive control (K+, iron-supplemented), and three treatment groups (P1, P2, P3) that received Nagara Bean-based feed for 1, 2, and 3 weeks, respectively. Hemoglobin (Hb), hematocrit (Hct), and red blood cell (RBC) levels were measured using Point-of-Care Testing (POCT) and manual cell counting. The results showed increases in Hb, Hct, and RBC across the treatment groups; however, statistical analysis indicated that these improvements were primarily associated with the duration of feed administration rather than treatment type. The greatest hematological improvement was observed after two weeks of feeding (P2). These findings indicate that Nagara Bean supplementation supports hematological recovery in anemic mice. The results suggest that Vigna unguiculata subsp. cylindrica has potential as a natural, affordable, and locally available source of bioavailable iron for anemia prevention and dietary intervention programs.References
AACC International (2000) Approved Methods of the American Association of Cereal chemists. 11th Edition, Method 46-10.01, The Association, St. Paul.
Adekunle, O. A. (2014). Evaluation of cookies produced from blends of wheat, cassava and cowpea flours. International Journal of Food Studies, 3(2), 175–185. https://doi.org/10.7455/ijfs/3.2.2014.a4
Albano, G. D., La Spina, C., Buscemi, R., Palmeri, M., Malandrino, G., Licciardello, F., Midiri, M., Argo, A., & Zerbo, S. (2024). RETRACTED: Systematic Review of Fatal Sodium Nitrite Ingestion Cases: Toxicological and Forensic Implications. Toxics, 12(2). https://doi.org/10.3390/toxics12020124
Almatsier, S. (2001). Prinsip dasar ilmu gizi.
Ambarwati, R. (2012). Effect of sodium nitrite (NaNO2) to erithrocyte and hemoglobin profile in white rat (rattus norvegicus). Folia Medica Indonesiana, 48(1), 1–5.
An, F., Wang, S., Yuan, D., Gong, Y., & Wang, S. (2016). Attenuation of Oxidative Stress of Erythrocytes by Plant-Derived Flavonoids, Orientin and Luteolin. Evidence-Based Complementary and Alternative Medicine : ECAM, 2016, 3401269. https://doi.org/10.1155/2016/3401269
Anand, I. S., Kuskowski, M. A., Rector, T. S., Florea, V. G., Glazer, R. D., Hester, A., Chiang, Y. T., Aknay, N., Maggioni, A. P., Opasich, C., Latini, R., & Cohn, J. N. (2005). Anemia and Change in Hemoglobin Over Time Related to Mortality and Morbidity in Patients With Chronic Heart Failure. Circulation, 112(8), 1121–1127. https://doi.org/10.1161/CIRCULATIONAHA.104.512988
Andrade, C. (2019). The P Value and Statistical Significance: Misunderstandings, Explanations, Challenges, and Alternatives. Indian Journal of Psychological Medicine, 41(3), 210. https://doi.org/10.4103/IJPSYM.IJPSYM_193_19
Ansari, F. A., Ali, S. N., & Mahmood, R. (2015). Sodium nitrite-induced oxidative stress causes membrane damage, protein oxidation, lipid peroxidation and alters major metabolic pathways in human erythrocytes. Toxicology in Vitro, 29(7), 1878–1886. https://doi.org/https://doi.org/10.1016/j.tiv.2015.07.022
AOAC (Association of Official Analytical Chemists) International (2007) Official Methods of Analysis. 18th Edition, AOAC International, Gaithersburg.
Augustin, L. S. A., Kendall, C. W. C., Jenkins, D. J. A., Willett, W. C., Astrup, A., Barclay, A. W., Björck, I., Brand-Miller, J. C., Brighenti, F., Buyken, A. E., Ceriello, A., La Vecchia, C., Livesey, G., Liu, S., Riccardi, G., Rizkalla, S. W., Sievenpiper, J. L., Trichopoulou, A., Wolever, T. M. S., … Poli, A. (2015). Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutrition, Metabolism and Cardiovascular Diseases, 25(9), 795–815. https://doi.org/10.1016/j.numecd.2015.05.005
Black, M. M., Fernandez-Rao, S., Nair, K. M., Balakrishna, N., Tilton, N., Radhakrishna, K. V., Ravinder, P., Harding, K. B., Reinhart, G., Yimgang, D. P., & Hurley, K. M. (2021). A Randomized Multiple Micronutrient Powder Point-of-Use Fortification Trial Implemented in Indian Preschools Increases Expressive Language and Reduces Anemia and Iron Deficiency. Journal of Nutrition, 151(7), 2029–2042. https://doi.org/10.1093/jn/nxab066
Bolliger, A. P., & Everds, N. (2012). Chapter 2.9 - Haematology of the Mouse (H. J. B. T.-T. L. M. (Second E. Hedrich, Ed.; pp. 331–347). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-382008-2.00014-3
Bonarska-Kujawa, D., Pruchnik, H., & Kleszczyńska, H. (2012). Interaction of selected anthocyanins with erythrocytes and liposome membranes. Cellular & Molecular Biology Letters, 17(2), 289–308. https://doi.org/10.2478/s11658-012-0010-y
Chiabrando, D., Mercurio, S., & Tolosano, E. (2014). Heme and erythropoieis: more than a structural role. Haematologica, 99(6), 973–983. https://doi.org/10.3324/haematol.2013.091991
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ. Computer Science, 7, 1–24. https://doi.org/10.7717/PEERJ-CS.623
Cogan, J. C., Meyer, J., Jiang, Z., & Sholzberg, M. (2024). Iron deficiency resolution and time to resolution in an American health system. Blood Advances, 8(23), 6029–6034. https://doi.org/10.1182/bloodadvances.2024013197
Correnti, M., Gammella, E., Cairo, G., & Recalcati, S. (2022). Iron Mining for Erythropoiesis. International Journal of Molecular Sciences, 23(10). https://doi.org/10.3390/ijms23105341
Correnti, M., Gammella, E., Cairo, G., & Recalcati, S. (2024). Iron Absorption: Molecular and Pathophysiological Aspects. Metabolites, 14(4). https://doi.org/10.3390/METABO14040228
Daniel Ikechukwu, O., Chukwuka, B., Adione, N., & Ezeobi, M. (2024). Evaluation of blood boosting potentials of combined administration of Vigna unguiculata and Citrus limon ethanol extracts using Wister rat models. Magna Scientia Advanced Research and Reviews, 10, 213–221. https://doi.org/10.30574/msarr.2024.10.2.0059
Dewi, Z., & Sajiman, S. (2023). Profile Hemoglobin and Ferritin of Rattus Wistar with Iron Deficiency Anemia After Consumption of a Snack Bar from Cowpea Flour (Vigna Unguiculata) and Haruan Fish (Ophicephalus Melanopterus). Pharmacognosy Journal,15(6),995-998.
Simeone, E.I., Tufon, E.N., Victor, O.N., & Noel, N.N. (2012). Antisickling potential of the ethanol seed extracts of Vigna unguiculata and Vigna subterranean. International Journal of Biochemistry and Biotechnology,1(9), 226-229,
Egba, S. I., Uzoegwu, P. N., Emmanuel, T. N., & Elijah, J. P. (2011). Amino acid content and proximate analysis of the ethanol seed extract of Vigna unguiculata used in the management of sickle cell disease. J. Chem. Pharm. Res, 3(4), 538–541.
Fertrin, K. Y. (2020). Diagnosis and management of iron deficiency in chronic inflammatory conditions (CIC): is too little iron making your patient sick? Hematology. American Society of Hematology. Education Program, 2020(1), 478–486. https://doi.org/10.1182/HEMATOLOGY.2020000132
Gerrano, A. S., Thungo, Z. G., Shimelis, H., Mashilo, J., & Mathew, I. (2022). Genotype-by-Environment Interaction for the Contents of Micro-Nutrients and Protein in the Green Pods of Cowpea (Vigna unguiculata L. Walp.). Agriculture (Switzerland), 12(4). https://doi.org/10.3390/agriculture12040531
Ginzburg, Y., An, X., Rivella, S., & Goldfarb, A. (2023). Normal and dysregulated crosstalk between iron metabolism and erythropoiesis. ELife, 12. https://doi.org/10.7554/eLife.90189
Gluhcheva, Y., Ivanov, I., Petrova, E., Pavlova, E., & Vladov, I. (2012). Sodium nitrite-induced hematological and hemorheological changes in rats. https://api.semanticscholar.org/CorpusID:26959251
Gupta, A., Stead, T. S., & Ganti, L. (2024). Determining a Meaningful R-squared Value in Clinical Medicine. Academic Medicine & Surgery. https://doi.org/10.62186/001C.125154
Haematology, S. (2016). The importance of reticulocyte detection. Sysmex Educational Enhancement Development, 2016, 1–8.
Halterman, J. S., & Segel, G. B. (2023). Iron Deficiency Anemia. Pediatric Clinical Advisor, 31–31. https://doi.org/10.1016/B978-032303506-4.10019-7
Imran Hussain, M., Basharat, M., Akhtar, S., Mohamed Yahaya, M., Aslam, N., Shahzad, S., & Authors, C. (2024). Synergistic effect of ascorbic acid and iron supplementation against postpartum anemia and oxidative stress mitigation. Journal of Population Therapeutics and Clinical Pharmacology, 31(3), 1988–1998. https://doi.org/10.53555/JPTCP.V31I3.4977
Imungi, J. K., & Potter, N. N. (1983). Nutrient contents of raw and cooked cowpea leaves. Journal of Food Science, 48(4), 1252–1254.
Iswahyudi, I., & Putri, I. (2022). Pemanfaatan Tepung Kacang Tunggak (Vigna unguiculata) dan Tepung Biji Saga Pohon (Adenanthera pavonina Linn) dalam Pembuatan Flakes. ARGIPA (Arsip Gizi Dan Pangan), 7, 80–92. https://doi.org/10.22236/argipa.v7i1.7768
Jachno, K. M., Heritier, S., Woods, R. L., Mahady, S., Chan, A., Tonkin, A., Murray, A., McNeil, J. J., & Wolfe, R. (2022). Examining evidence of time-dependent treatment effects: an illustration using regression methods. Trials, 23(1), 857. https://doi.org/10.1186/S13063-022-06803-X
Jimenez, K., Kulnigg-Dabsch, S., & Gasche, C. (2015). Management of Iron Deficiency Anemia. Gastroenterology & Hepatology, 11(4), 241. https://pmc.ncbi.nlm.nih.gov/articles/PMC4836595/
Kapravelou, G., Martínez, R., Martino, J., Porres, J. M., & Fernández-Fígares, I. (2020). Natural Fermentation of Cowpea (Vigna unguiculata) Flour Improves the Nutritive Utilization of Indispensable Amino Acids and Phosphorus by Growing Rats. Nutrients, 12(8), 1–19. https://doi.org/10.3390/NU12082186
Kiss, J. E., Brambilla, D., Glynn, S. A., Mast, A. E., Spencer, B. R., Stone, M., Kleinman, S. H., & Cable, R. G. (2015). Oral iron supplementation after blood donation: a randomized clinical trial. JAMA, 313(6), 575–583. https://doi.org/10.1001/jama.2015.119
Kumar, S. B., Arnipalli, S. R., Mehta, P., Carrau, S., & Ziouzenkova, O. (2022). Iron Deficiency Anemia: Efficacy and Limitations of Nutritional and Comprehensive Mitigation Strategies. Nutrients, 14(14). https://doi.org/10.3390/NU14142976
Lewis, A.J., & Southern, L. L. (Eds. ). (2000). Swine Nutrition (2nd ed.). CRC Press. https://doi.org/10.1201/9781420041842
Lynch, S. R., & Cook, J. D. (1980). Interaction of vitamin C and iron. Annals of the New York Academy of Sciences, 355, 32–44. https://doi.org/10.1111/j.1749-6632.1980.tb21325.x
Marcus, H., Schauer, C., & Zlotkin, S. (2021). Effect of Anemia on Work Productivity in Both Labor- and Nonlabor-Intensive Occupations: A Systematic Narrative Synthesis. Food and Nutrition Bulletin, 42(2), 289–308. https://doi.org/10.1177/03795721211006658
Math, M., Kattimani, Y., Khadkikar, R., Patel, S., Shanti, V., & Inamdar, R. (2016). Red Blood Cell Count: Brief History and New Method. MGM Journal of Medical Sciences, 3, 116–119. https://doi.org/10.5005/jp-journals-10036-1104
Montoro-Huguet, M. A., Belloc, B., & Domínguez-Cajal, M. (2021). Small and Large Intestine (I): Malabsorption of Nutrients. Nutrients, 13(4). https://doi.org/10.3390/NU13041254
Mpiana, P. T., Mudogo, V., Ngbolua, K.-T.-N., Tshibangu, D., Atibu, E., Kitwa, E., & Kanangila, A. (2009). In vitro Antisickling Activity of Anthocyanins Extracts of Vigna unguiculata (L.) Walp. In Chemistry and medicinal value, 91–98.
Mwangwela, A. (2008). Physicochemical characteristics of conditioned and micronised cowpeas and functional properties of the resultant flours. https://repository.up.ac.za/handle/2263/26835
Njapndounke, B., Saah, M. B. D., Kouam, M. E. F., Boungo, G. T., & Ngoufack, F. Z. (2021). Optimum Biscuit From Musa Sapientum L. And Vigna Unguiculata L. Composite Flour: Effect On Pancreatic Histology, Biochemical And Hematological Parameters Of Diabetic Rats. Heliyon, 7(9). https://doi.org/10.1016/j.heliyon.2021.e07987
OMS. (2023). Accelerating anaemia reduction: a comprehensive framework for action. World Health Organisation. https://www.who.int/publications/i/item/ 9789240074033
Riswari, S. F., Budiman, M. F., Darmayanti, D., Ernawati, Prodjosoewojo, S., Susandi, E., Oehadian, A., & Alisjahbana, B. (2022). A comparison of the accuracy of handheld hemoglobinometer and hematocrit measurements for detecting plasma leakage in dengue hemorrhagic fever. International Journal of General Medicine, 2589–2595.
Sardar, H., Hadi, F., Alam, W., Halawani, I. F., Alzahrani, F. M., Saleem, R. A., Cerqua, I., Khan, H., & Capasso, R. (2024). Unveiling the therapeutic and nutritious potential of Vigna unguiculata in line with its phytochemistry. Heliyon, 10(18), e37911. https://doi.org/10.1016/j.heliyon.2024.e37911
Siddhuraju, P., & Becker, K. (2007). The antioxidant and free radical scavenging activities of processed cowpea (Vigna unguiculata (L.) Walp.) seed extracts. Food Chemistry, 101(1), 10–19. https://doi.org/10.1016/J.FOODCHEM.2006. 01.004
Silva-Santana, G., Bax, J. C., Fernandes, D. C. S., Bacellar, D. T. L., Hooper, C., Dias, A. A. S. O., Silva, C. B., de Souza, A. M., Ramos, S., Santos, R. A., Pinto, T. R., Ramão, M. A., & Mattos-Guaraldi, A. L. (2020). Clinical hematological and biochemical parameters in Swiss, BALB/c, C57BL/6 and B6D2F1 Mus musculus. Animal Models and Experimental Medicine, 3(4), 304–315. https://doi.org/10.1002/ame2.12139
Silvestri, L., & Nai, A. (2021). Iron and erythropoiesis: A mutual alliance. Seminars in Hematology, 58(3), 145–152.
SKI. (2023). SKI 2023 Dalam Angka - Badan Kebijakan Pembangunan Kesehatan | BKPK Kemenkes. https://www.badankebijakan.kemkes.go.id/ski-2023-dalam-angka/
Sodedji, F. A. K., Ryu, D., Choi, J., Agbahoungba, S., Assogbadjo, A. E., N’Guetta, S.-P. A., Jung, J. H., Nho, C. W., & Kim, H.-Y. (2022). Genetic diversity and association analysis for carotenoid content among sprouts of cowpea (Vigna unguiculata L. Walp). International Journal of Molecular Sciences, 23(7), 3696.
Suparmi, S., Fasitasari, M., Latifah, F., Ifroza, L., Taufiqurrokhim, N. H., Lestanu, L. A., Irmadhani, D., Wahyudi, D. P. A. S., & Rustanti, N. (2025). Sauropus androgynus chlorophyll ameliorates the hazardous effect of sodium nitrite-induced oxidative stress in adult female rats. Brazilian Journal of Biology = Revista Brasleira de Biologia, 85, e292058. https://doi.org/10.1590/1519-6984.292058
Thangadurai, D. (2005). Chemical Composition And Nutritional Potential Of Vigna Unguiculata Ssp. Cylindrica (Fabaceae). Journal of Food Biochemistry, 29(1), 88–98. https://doi.org/10.1111/J.1745-4514.2005.00014.X
Whitehead, R. D. J., Mei, Z., Mapango, C., & Jefferds, M. E. D. (2019). Methods and analyzers for hemoglobin measurement in clinical laboratories and field settings. Annals of the New York Academy of Sciences, 1450(1), 147–171. https://doi.org/10.1111/nyas.14124
Zaheer, M., Ahmed, S., & Hasan, M. (2020). Vigna unguiculata (L.) Walp. (Papilionaceae): A review of medicinal uses, Phytochemistry and pharmacology. Journal of Pharmacognosy and Phytochemistry, 9, 1349–1352.
Zia-Ul-Haq, M., Ahmad, S., Amarowicz, R., & De Feo, V. (2013). Antioxidant Activity of the Extracts of Some Cowpea (Vigna unguiculata (L) Walp.) Cultivars Commonly Consumed in Pakistan. Molecules 2013, Vol. 18, Pages 2005-2017, 18(2), 2005–2017. https://doi.org/10.3390/MOLECULES18022005
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Wahdah Norsiah, Anny Thuraidah; Tini Elyn Herlina

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Publishing your paper with Medical Laboratory Technology Journal (MLTJ) means that the author or authors retain the copyright in the paper. MLTJ granted an author(s) rights to put the paper onto a website, distribute it to colleagues, give it to students, use it in your thesis etc, even commercially. The author(s) can reuse the figures and tables and other information contained in their paper published by MLTJ in future papers or work without having to ask anyone for permission, provided that the figures, tables or other information that is included in the new paper or work properly references the published paper as the source of the figures, tables or other information, and the new paper or work is not direct at private monetary gain or commercial advantage.
MLTJ journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. This journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets others remix, transform, and build upon the material for any purpose, even commercially. MLTJ journal Open Access articles are distributed under this Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA). Articles can be read and shared for All purposes under the following conditions:
BY: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.SA: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.




